SantyagoSantyago
Avatar

Witaj!
Blog archiwalny. Już niebawem nowy serwis!

YouTube RSS Facebook GitHub

Dziś kontynuujemy temat cyfrowych czujników prądu i mocy, współpracujących z Arduino - a konkretnie zajmiemy się układem INA226, który jest bardziej rozbudowaną wersją opisywanego niedawno INA219. Układ ten oferuje zwiększony zakres pomiarowy napięcia z przedziału 0 ± 36V, 16-bitową rozdzielczość oraz o rząd większą dokładność pomiaru na poziomie ±0.1%. Podobnie jak w przypadku  INA219, komunikujemy się z mikrokontrolerem za pomocą szyny I2C. Ten miniaturowy układ posiada również dodatkowy sygnał ALERT, który może pracować w kilku konfiguracjach. Brzmi ciekawie?

Zapraszam do pełnego artykułu: Dwukierunkowy cyfrowy czujnik prądu/mocy INA226

Reklama

Jeśli próbowaliście kiedyś wdrożyć w swoim projekcie pomiar napięć i prądu za pomocą standardowych metod z wykorzystaniem wejść analogowych Arduino, to zapewne spotkaliście się z problem dokładności takich pomiarów, a w szczególności małych jego wartości. Posiadam dwukanałowy moduł AVT5399, jednak jego dokładność pozostawia wiele do życzenia. Poszukując lepszych rozwiązań, natknąłem się na bardzo fajny układ INA219 komunikujący się z mikrokontrolerem za pomocą szyny I2C, pozwalający na bardzo dokładny pomiar nawet bardzo małych wartości z dokładnością ±1% i rozdzielczością 0.1μA. Jak się sprawuje? Jak działa? Dowiecie się z nowego artykułu w dziale Arduino.

Pełny artykuł: Dwukierunkowy cyfrowy czujnik prądu/mocy INA219

Jeśli zastanawialiście się kiedyś nad bezprzewodowym zasilaniem własnych projektów, to najwyższy czas o tym pomyśleć. W ramach ciekawostki sprawdziłem, jak radzą sobie dostępne na naszym rynku dostępne moduły zasilające z zakresu 3.3V - 12V. Macie jakieś ciekawe pomysły zastsowania ich w praktyce?

Pełny artykuł: Bezprzewodowe moduły zasilania

MarsBoard RK3066 oprócz współpracy z systemem operacyjnym Android, może działać również pod kontrolą Linuksa. Producent tego urządzenia przygotował swoją odmianę dystrybucji PicUntu oznaczonej numerem 0.9 RC2.2 (bazującej Ubuntu Qantal 12.10). Na stronie domowej MarsBoard możemy wybrać jedną z trzech jego odmian:

  • uruchamianą z pamięci NAND Flash z obsługą ekranu dotykowego HY070CTP-A
  • urcuhamianą z pamięci NAND Flash z obsługą HDMI
  • oraz uruchamianą z karty microSD z obsługą HDMI

Instalacja w pamięci NAND Flash z obsługą HDMI

Do wgrania PicUntu w wersji HDMI do pamięci NAND Flash będziemy potrzebować specjalnego narzędzia o nazwie upgrade_tool (do pobrania z tego miejsca)

  1. # mkdir marsboard
  2. # cd marsboard/
  3. # wget http://www.haoyuelectronics.com/service/RK3066/tools/linux/Linux_Upgrade_Tool_v1.16.zip
  4. # unzip Linux_Upgrade_Tool_v1.16.zip
  5. # chmod +x upgrade_tool

Rzecz jasna, będziemy również potrzebowali obrazu systemu w wersji HDMI:

  1. # wget http://bit.ly/1fRx81u -O picuntu-0.9-RC2.2-HDMI-NAND.img.7z
  2. # 7z x picuntu-0.9-RC2.2-HDMI-NAND.img.7z

Aby mieć możliwość wgrania obrazu do pamięci NAND Flash, musimy uruchomić płytkę w trybie Recovery. W tym celu podczas podłączania do portu USB OTG należy przytrzymać przycisk "SW1". Po tym zabiegu powinniśmy zobaczyć w naszym systemie urządzenie, wydając polecenie lsusb:

  1. # lsusb
  2. Bus 003 Device 012: ID 2207:300a

Kiedy wszystko jest gotowe, możemy przystąpić do "wypalenia" obrazu:

  1. # sudo ./upgrade_tool uf nazwa_naszego_obrazu.img

I gotowe! Po chwil powita nas pulpit GNOME, do którego logujemy się za pomocą hasła: marsboard.

Jak widzimy, rozmiar pamięci NAND nie pozwala nam na wiele manewrów - 2GB to odrobinę krucho jak na PicUntu. Ale o tym dalej. Na początek zajmiemy się konfiguracją połączenia sieciowego.

Konfiguracja Wi-Fi

MarsBoard RK3066 jest dostarczane razem z kartą sieciową USB Wi-Fi Mercury (RTL8188EU) w komplecie. Karta ta (co się komu trafi) może być wykryta jako interfejsy wlan0 - wlan3. Wypadałoby się więc dowiedzieć, pod jakim interfejsem jest dostępna nasza karta sieciowa wydając polecenie: sudo iwconfig. Mając już tą świadomość, możemy przystąpić do konfiguracji połączenia w programie wicd.

W polu "Wireless interface" wpisujemy nasz interfejs i zatwierdzamy przyciskiem OK. Wybierając zakładkę Refresh powinniśmy już widzieć otaczające nas punkty dostępowe sieci bezprzewodowych.

 

Instalacja na karcie pamięci uSD z obsługą HDMI

Jak wspomniałem wcześniej, 2GB pamięć NAND jest pewną przeszkodą, a bootloader dla układu RK3066  jest niestety oprogramowaniem zamkniętym, dlatego uruchomienie systemu musi odbywać się wyłącznie z pamięci NAND Flash. Można jednak odpowiednio skonfigurować start jądra systemu ze wskazaniem karty pamięci SD jako nośnika systemu plików rootfs. Będziemy potrzebowali tym razem dwóch obrazów. Jeden do "wypalenia" w pamięci NAND Flash oraz drugi, przeznaczony dla karty SD. Ponownie korzystamy z narzędzia upgrade_tool w trybie recovery.

  1. # wget http://bit.ly/1j04XCQ -O MarsBoard_RK3066_HDMI_boot_from_sdcard_rootfs_v1.1.img
  2. # wget http://bit.ly/NQ3Jho -O  MarsBoard_RK3066_PicUntu_sd_rootfs.img.tar.gz
  3. # tar -zxvf MarsBoard_RK3066_PicUntu_sd_rootfs.img.tar.gz

Wypalamy pamięć NAND Flash:

  1. # sudo ./upgrade_tool uf MarsBoard_RK3066_HDMI_boot_from_sdcard_rootfs_v1.1.img

a następnie kartę SD:

Uwaga! Należy zwrócić szczególną uwagę na urządzenie docelowe /dev/sdX, abyśmy przypadkiem nie wykasowali sobie ważnego dysku. Karta pamięci musi mieć minimum 4GB.

  1. # sudo dd if=marsboard-picuntu-linuxroot-0.9-RC2.2-lubuntu-desktop-rfs.img of=/dev/sdX

Kiedy wszystko przebiegnie sprawnie, wkładamy kartę microSD do slotu pamięci i odpalamy MarsBoarda.

Domyślnie partycja rootfs posiada rozmiar 3GB, jeśli mamy kartę pamięci o większej pojemności, w prosty sposób możemy zwiększyć jej powierzchnię wydając jedno polecenie:

  1. # sudo resize2fs /dev/mmcblk0

Jeśli mamy na to ochotę, możemy również zaktualizować nasz system:

  1. # sudo apt-get update
  2. # sudo apt-get upgrade

Nie zalecam jednak proponowanej aktualizacji systemu do wersji Ubuntu 13.10 Saucy Salamander.

Problemy z połączeniem Ethernet

W obecnej wersji PicUntu dla MarsBoard RK3066 występuje problem z działaniem portu Ethernet. Nie jest to wina ani systemu, ani jądra systemu. Obecny obraz zawiera bootloader w wersji 1.22, który ma kłopoty z jego inicjalizacją. Problem ten nie występuje podobno w bootloaderze w wersji 2.07. Jak sobie z tym poradzić? Jeszcze nie wiem :) Ale próby i rozmowy trwają.

Wgrywanie nie powiodło się?

Może zdarzyć się sytuacja, że wgrywanie nowego systemu do pamięci NAND Flash zakończy się niepowodzeniem, wyświetlając komunikat "Download Firmware Fail".

Najczęściej może się to przytrafić, gdy zapisujemy system po raz kolejny. Nie należy panikować - wystarczy uprzednio sformatować NAND-a wydając polecenie:

  1. # sudo ./upgrade_tool lf

Co dalej?

Jak to zwykle bywa z działaniem Linuksów z układem graficznym Mali 400 nie ma zaskoczenia. Akceleracja sprzętowa 3D OpenGL ES i dekodowanie materiałów filmowych nie jest jego mocną stroną. Co wcale nie czyni go produktem słabym, czy przeciętnym. Dwa rdzenie Cortex A9 1.6 GHz doskonale sprawdzą się w rozwiązaniach mini-serwera domowego do szerokiej gamy zastosowań (o czym będziecie mogli poczytać w kolejnych częściach). Dotykowy wyświetlacz pojemnościowy LCD za rozsądną cenę to także spory atut otwierający przed Marsem wiele drzwi do zastosowań bardziej wygustowanych. A wszystko to kosztem maksymalnie 5W. Podczas powyższych testów MarsBoard RK3066 przez zdecydowaną większość czasu zadowalał się poborem energii na poziomie jedynie 2.5W.

Oczywiście nie byłbym sobą, gdybym nie przygotował własnej dystrybucji, uzupełniającej obecne niedociągnięcia. Macie jakieś pomysły na nazwę kodową? :)

Kontakt z producentem na forum oceniam jako dobry. Zaangażowanie jest również OK - wiki jest ciągle aktualizowane o nowe poradniki, takie jak: kompilacja, konfiguracja czy wykorzystanie GPIO. Pamiętajmy, że przygotowane obrazy systemów są pierwszymi wersjam, więc należy dać im kredyt zaufania w oczekiwaniu na kolejne wydania.


Sprzęt do testu dostarczył sklep
ArduinoSolutions.

MarsBoard RK3066 to kolejna, niskobudżetowa platforma deweloperska oparta o układ SoC Rockchip RK3066, będący kolejną kombinacją dwurdzeniowego procesora ARM Cortex-A9 taktowanego zegarem 1.6GHz z układem graficznym Mali400.  Dzięki ponownej uprzejmości sklepu ArduinoSolutions mam okazję porównania jej  z innymi dostępnymi urządzeniami tego typu na naszym rynku.

MarsBoard RK3066

 

Nowy MarsBoard w budowie przypomina Iteaduduino Plus - składa się z płytki głównej i wymiennego moduł z układem SoC Rockchip RK3066, pamięcią 1GB DDR3 oraz pamięcią NAND Flash o rozmiarze 4GB, na której możemy zainstalować system operacyjny Android lub Linux. Układ graficzny Mali400 taktowany jest zegarem 533MHz oraz obsługuje standard OpenGL ES 2.0.

Na płycie głównej znajdziemy gniazdo HDMI 1.4a, port Ethernet (LAN8720A), cztery gniazda USB 2.0 oraz jedno microUSB pełniące funkcję OTG. Ciekawym rozwiązaniem jest dostępność dodatkowego gniazda microUSB, pełniącego funkcję portu szeregowego (za tą część odpowiada układ CP2102).

W przypadku, gdy rozmiar pamięci NAND Flash jest dla nas nie wystarczający, możemy skorzytać ze slotu kart pamięci Micro-SD SDXC, z którego również możemy uruchomić system operacyjny. Na płytce znalazły się również cztery przyciski sterujące: VOL+ (Recover Key), VOL-, ESC oraz Power KEY.

Na odwrocie znajdziemy złącze interfejsu LCD do którego możemy podłączyć dedykowany, pojemnościowy ekran dotykowy HY070CTP.

7" ekran TFT HY070CTP (800x480)

Akcesoria

Wraz z MarsBoard RK3066 otrzymamy bezprzewodową kartę sieciową Wi-FI USB Mercury (RTL8188EU), kabelek microUSB oraz zasilacz 5V/4A. W pudełku znalazłem również gustowną, różową podstawkę pod ekran LCD :]

  

Porównanie parametrów

  Raspberry Pi B Iteaduino Plus A10 MarsBoard RK3066 ODROID-X2
 
Procesor Broadcom BCM2835 Allwinner A10 Rockwell RK3066 Exynos 4412
Rodzina ARM v6  ARM Cortex A8 ARM Cortex A9  ARM Cortex A9
Zegar procesora 700 MHz  1,0 GHz 1,6 GHz  1,7 GHz
Liczba rdzeni 1  1  2 4
Układ graficzny VideoCore 4  ARM Mali-400  ARM Mali-400 ARM Mali-400
Zegar grafiki 400 MHz  400 MHz 533 MHz 533 MHz
OpenGL ES 2.0  2.0 2.0 2.0
 Pamięć RAM  512 MB  1024 MB    1024 MB 2048 MB
 USB 2.0  Tak (6x) Tak (2x)  Tak (4x) Tak (6x)  
USB 2.0 OTG Nie Tak (1x) Nie Nie
Serial NIe Tak (1x) Nie Nie
 HDMI Tak Tak Tak Tak
eMMC / NAND Nie Nie Tak
(wbudowana 4GB)
Tak
microSD Nie Tak Tak Nie
SD Tak Nie Nie Tak
SATA Nie Tak Nie Nie
10/100 Ethernet Tak  Tak Tak Tak
Akcesoria
w komplecie
Nie Kabel SATA
Zasilacz
Obudowa
Kabel USB
Zasilacz
Kabel USB
Podstawka LCD
Karta Wi-Fi USB
Nie
Wymiary   86 x 54 mm  109 x 76 mm 105 x 76 mm   90 x 94 mm
Cena ~ 165 zł ~ 235 zł ~ 245 zł ~ 445 zł

Android 4.1.1

Domyślnie w pamięci NAND FLASH zainstalowany jest  Android w wersji 4.1.1 w wersji do współpracy z pojemnościowym ekranem dotykowym LCD HY070CTP. Ekran ten obsługuje rozdzielczość 800x480 pikseli oraz 5 punktów dotykowych  Jak na ustaloną cenę 175 zł to całkiem nieźle!

Parametry systemu

Wydajność w programie Antutu

MarsBoard RK3066 w teście Antutu otrzymuje wynik 11.847 punktów. Przypomnę, że Iteaduino Plus A10 uzyskał wynik 3.962 punktów, natomiast ODROID-X2 zdobywa w tym teście 19.574 punktów.

  

Wydajność w programie 3D Mark

Do testu w programie 3D Mark konieczna była instalacja systemu Android w wersji 4.2.2 opartego o oprogramowanie R-BOX. Niestety system ten nie posiada roota i nie mogłem wykonać tradycyjnego zrzutu ekranu. Dlatego proszę o wybaczenie za popełnione zdjęcie :) Tak, czy inaczej MarsBoard RK3066 uzyskuje dobry wynik 2534 punktów vs. ODROID-X2 2612 punktów.

Podsumowanie

Nowy MarsBoard RK3066 to bardzo ciekawa pozycja, oferująca bardzo dobry wynik stosunku wydajności do ceny.

Dwurdzeniowy, szybki procesor, wbudowana pamięć NAND Flash oraz wydajny układ graficzny Mali 400 czyni go liderem w tym przedziale cenowym. Producent zadbał również o komplet obrazów NAND oraz SD systemów operacyjnych Android 4.1, Android 4.2 oraz PicUntu 0.9 RC2.2 (Ubuntu Qantal 12.10 + Lubuntu). Na stronie domowej znajdziemy także narzędzia do flashowania pamięci NAND dla systemów operacyjnych Linux i Windows oraz dokumentację.

Nie zapomniano również o poradnikach na temat instalacji, kompilacji oraz konfiguracji na specjalnie przygotowanym wiki Jeśli chodzi o samego Androida to działa płynnie, bez problemu odtwarza materiały filmowe w rozdzielczości 1080p. Obsługa taniego, dotykowego wyświetlacza LCD czyni go smakowitym kąskiem do zastosowań w automatyce.


Sprzęt do testu dostarczył sklep
ArduinoSolutions.