

Features

- •Supports both constant voltage and constant current drive mode
 - Constant output current range
 - -5-30mA@5V supply voltage
- -5-20mA@3.3V supply voltage
- •18 constant current driving channels
- 30V high voltage output channels
- 8bit PWM gray level control
- Precision output driving current
 Between channels in a chin; +2
 - Between channels in a chip: ±2 % Between chips: ±4%
- Maximum clock frequency up to 25MHz.
- Free run ability
- Over temperature protection

General Description

The WS2803 is a constant current LED driver. It is designed for indoor/ outdoor LED displays and decorative LED lighting system. It is suitable for LED cascading applications. The WS2803 ownes 18 output channels, each channel can drive a constant current up to 30mA. WS2081 contains serial shift registers, data latches, output registers, band gap reference voltage generator, internal oscillator, and programmable constant output current drivers. The serial data is read into the shift registers at the rise edge of the external clock. The data and clock output buffers are designed for cascading another chip. The output current can be set by connect a resistor at IREF pin to set the output current of each channel. The over temperature protection is built in to protect the chip from thermal damage, if the core temperature level rise over 120°C, the output current will be decreased to stable the core temperature within a safe level. The 2-wire control scheme can reduce the system cost; it is very suitable for low cost LED decorative LED lighting systems.

WS2803 is available in both SOP-28 and DIP-28 package, the operating temperature is -40~85 $^\circ C$

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	VCC	-0.3 to 6V	V
Input Voltage	V _{IN}	-0.3 to VCC+0.3V	V
Output Voltage	V _{OUT}	-0.4 to 45V	V
Output Pin Voltage	V _{XOUT}	-0.3 to 30V, I_{OUT} off	V
	V _{XOUT}	-0.3 to 10V,	V
Output Current Constant Current Drive Mode	Ioutcc	5 to 30	mA
Output Current Deviation Between output channels Between chips	D _{IOI} D _{IOE}	±2 ±4	%
Input Clock Frequency	F _{CLK}	25	MHz
Maximum Power Dissipation	PD	2600	mW
Operating Junction Temperature	Topr	-40 to + 150	
Storage Temperature Range	Tstg	-55 to + 150	°C
Lead Temperature (Soldering, 10 seconds)	Tsolder	300	
ESD susceptibility		2000	V

Note: If the voltage on the pins exceeds the maximum ratings may cause permanent damage to the device.

- LED decorative lighting
- Indoor/Outdoor LED video or massage display

Electrical Characteristics (VCC=5V, TA= 25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Power Supply Voltage Range	Vcc		3.3		5.5	V
Output Voltage	VOUT	IOUT=1uA	-0.3		40	V
	I _{outH}	Constant Current Output	5		30	mA
Output Current	I _{outL}	Output Cut Off, VOUT=30V	-	0.1	1	uA
	ISOURCE	Other Output		1		mA
	I _{SINK}	Other Output		-1		mA
Standby Supply Current	I _{STB}	IREF floating		1	1.5	mA
Minimum Constant Current Output Time	I _{ОН}	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $I_{OUT} = 20 \text{mA}$		14		uS
Input Current	1	PIN: CKI, SDI V _{IN} =VDD or GND			±1	uA
input Current	lin	PIN: LIN $V_{IN} = VDD$ or GND		±10	±20	uA
Input Voltage Level	VIH	TA - 40 - 125°C	0.8*VDD		VDD	V
	V _{IL}	TA40 ² ~125 C	GND		0.2*VDD	V
Output Current vs. Output Voltage Regulation	%dV _{OUT}	IREF=700Ω, @20mA		±0.1		%/V
Output Current Line Regulation	%dV _{CC}	$\label{eq:V_CC} V_{CC} = 4 \sim 5.5 \text{V}, V_{\text{OUT}}$ between 1.0V and 3.0V		±0.1		%/V
Pull LOW Resistance	RINLOW	R _{LIN} ,		30		KΩ

Switching Characteristics (VCC=5V, TA=25 $^\circ\!\!\mathrm{C}$)

Parameter		Symbol	Conditions	Min	Тур	Max	Units
Propagation Delay ('L' to 'H')	CKI-to-CKO	T_{pLH}	VIH=VCC	-	12		ns
Propagation Delay ('L' to 'H')	CKI-to-CKO	T_{pHL}	V _{IL} =GND	-	13.2		ns
Output Current Rise Time		T _{or}	R _{XFBs} =30		50		ns
Maximum Turn ON and OFF time of Drive Current		T _{of}	RL=180Ω		50		ns
Output Current Propagat	ion	$\textcircled{1}T_{OP}$	CL=30PF			3.3	mS

Switching Characteristics (VCC=3.3V, TA=25 $^\circ\!\mathbb{C}$)

Paran	neter	Symbol	Conditions	Min	Тур	Мах	Units
Propagation Delay ('L' to 'H')	CKI-to-CKO	T_{pLH}	V _{IH} =VCC	-	24		ns
Propagation Delay ('L' to 'H')	CKI-to-CKO	T_{pHL}	V _{IL} =GND		28		ns
Output Current Rise Time		T _{or}	R _{XFBs} =30Ω		50		
Output Current Fall Time		T _{of}	RL=180Ω		50		ns
Output Current Propagation		$(1)T_{OP}$	CL=30pF			3.3	mS

Typical Block Diagram

Pin Configurations

GND	1	28	□ vcc
NC	2	27	
IREF 🗔	3	26	
скі 🖂	4	25	СКО
SDI 🗖	5	24	SDO
OUTO	6	23	0UT17
OUT1	7	22	
OUT2	8	21	0UT15
OUT3	9	20	0UT14
OUT4	10	19	0UT13
	11	18	0UT12
OUT6	12	17	0UT11
	13	16	
OUT8	14	15	
		_	

Fig2.a SOP-28package

GND 🗂	1	28	⊃vcc
IREF 🗔	2	27	_) ско
NC 🗔	3	26	🗅 SDO
скі 🗔	4	25	⊡ис
SDI 🗂	5	24	⊡ис
опо 🗂	6	23	0UT17
DUT1 🗂	7	22	OUT16
OUT2 🗂	8	21	OUT15
оотз 🗂	9	20	0UT14
OUT4 🗂	10	19	0UT13
OUTS 🗂	11	18	0UT12
ооте 🗂	12	17	0UT11
оитт 🗂	13	16	;0UT10
оитя 🗂	14	15	⊡о∪т9

Fig2.b DIP-28 package

Pin Description

SOP-28

Pin No.	Pin Name	Pin Description
1	GND	Ground
2	IREF	A resistor connected to this pin can set the output constant current.
3	NC	None connection
4	СКІ	Data clock input
5	SDI	Serial gray scale data input
6~23	OUT0~17	Constant current output terminals
24	SDO	Buffered serial data output
25	СКО	Buffered clock output
26	NC	None connection
27	NC	None connection
28	VCC	VCC input

DIP-28

Pin Port	Pin Name	Pin Description
1	GND	Ground
2	IREF	A resistor connected to this pin can set the output constant current.
3	NC	None connection
4	СКІ	Data clock input
5	SDI	Serial gray scale data input
6~23	OUT0~17	Constant current output terminals
24	NC	None connection
25	NC	None connection
26	SDO	Buffered serial data output
27	СКО	Buffered clock output
28	VCC	VCC input

Application note:

Output Constant Current

In LED display and decorative applications, WS2803 provides nearly no variations in current from channel to channel and from IC to IC. This can be achieved by:

- 1) The maximum current variation between channels is less than 2%, and between chips is less than 4%.
- In addition, the current characteristic of the output stages is flat and users can refer to the figures as shown below. The output current can be kept constant regardless of the variations of led forward voltages (VF). This performs as a perfection of load regulation.

Adjusting the output current

The output current of each channel can be set by an external resistor, REXT, the output current can be set by the following formula:

$$I_{OUT} = \frac{V_{REXT}}{R_{EXT}} \times 22$$

Where, REXT is the resistance of the external resistor connected to REXT terminal, and VREXT is the voltage of REXT pin

VREXT=1.25V. To set the output current at 20mA, a resistor with 1.25Kohm resistance should be connected from REXT to GND. The relationship between IOUT and REXT is shown in the following figure.

Package Power Dissipation (PD)

The maximum allowable package power dissipation is determined as PD(max)=(Tj-Ta)/Rth(j-a), when all 18 output channels are turned on simultaneously, the actual package power dissipation is:

$$P_{D}(act) = (I_{DD} \times V_{DD}) + (I_{OUT} \times Duty \times V_{DS} \times 18)$$

Therefore, to keep PD(act)≤PD(MAX), the maximum output current as a function of duty cycle is:

$$I_{OUT} = \left(\frac{T_j T_a}{R_{th(j a)}} \quad I_{CC} \times V_{CC}\right) / V_{DS} / Duty / 18$$

The maximum power dissipation PD(MAX)=(Tj-Ta)/Rth(j-a), decreases as the ambient temperature increases.

Load Supply Voltage (VLED)

WS2803 is designed to operate VDS ranging from 0.4 to 1.0V, considering the package power dissipating limits. VDS maybe high enough to ensure PD(ACT)>PD(MAX), when VLED=24V and VDS=VLED-VF, in which VLED is the load supply voltage. In case it is recommended to use the lowest possible supply voltage or to set an external voltage reducer, VDROP, to dissipate the excessive power.

A voltage reducer lets V_{DS} =(V_{LED} - V_{F})- V_{DROP} .

Resistors or zener diode can be used in the applications as shown in the following figures.

Fig 3 power reducer of WS2803

2-wire Control Mode

When MS pin is connected to VCC, WS2803 operates in 2-wire control mode, at this mode, only 2 wires are needed to transmit the grayscale data. It is a low cost solution. Only 2 ports of MCU are needed to control over thousand WS2803 chips. At this mode, CKI pin keeps LOW more than 600us, the internal logic control circuitry will be reset. Once reset, the internal circuitry wait for the positive pulse on the CKI pin, at this state, the signal on SDI pin is shifted in to the internal data registers, once total 144 pulses are detected, WS2803 will latch the signal from the shift registers, and the WS2803 operates as a signal relay, at this state, the CKO and SDO are enabled. If the CKI keeps LOW for more than 600us, all the internal data control circuit will back to the original states, wait for next data transmi

Fig 4, WS2803 timing chart with 2-wire control in cascading application

The Connection and Driving of Cascading Operation

The transmit the data over long distance by cascading, the WS2803 integrates push-pull output stage with strong driving capability which enables the data and clock can be transmitted up to 6 meters at 2MHz clock frequency. To prevent the reflection, it is necessary to connect a 50Ω resistor at the data input or output port for impedance match.

Package Information

Symbol	Min	Nom	Max
Symbol			
A	2.465	2.515	2.565
A1	0.100	0.150	0.200
A2	2.100	2.300	2.500
A3		0.274	
b	0.356	0.406	0.456
b1	0.366	0.426	0.486
С		0.254	
D1	17.750	17.950	18.150
D2	17.800	18.000	18.200
E	10.100	10.300	10.500
E1	7.374	7.450	7.574
E2	7.424	7.500	7.624
е		1.270	
L	0.764	0.864	0.964
L1	1.303	1.403	1.503
R		0.200	
R1		0.300	
θ	0		
θ 1	0		10 °
У			0.1
Z		0.745	

Fig 6.a SOP-28

DIP-28 package (Unit:mm)

	DIMENSIC	NS IN MIL	LIMETERS.	DIMENSIONS IN INCHES		
STRIDUES	MIN	NDM	MAX	MIN	NDM	MAX
A	3.67	3.69	3.70	0.144	0.145	0.146
A1	0.33	0.39	0.46	0.013	0.015	0.018
A2	3.27	3.30	3.31	0.129	0.130	0.131
b	-	0.46	-	-	0.018	-
b1	1.52	1.55	1.61	0.060	0.061	0.063
C	0.24	-	0.26	0.009	-	0.01
D	34.96	35.18	35.30	1.376	1.385	1.389
S	3.34	3.38	3.40	0.131	0.133	0.134
E	8.12	8.13	8.15	0.319	0.320	0.321
E1	7.32	7.38	7.40	0.288	0.290	0.291
e	-	2.54	-	-	0.1	-
L	-	3.23	3.25	-	0.127	0.128
eB	8.4	8.9	9.4	0.330	0.350	0.370

Fig 6.b DIP-28

World Semiconductor,Inc May.2008